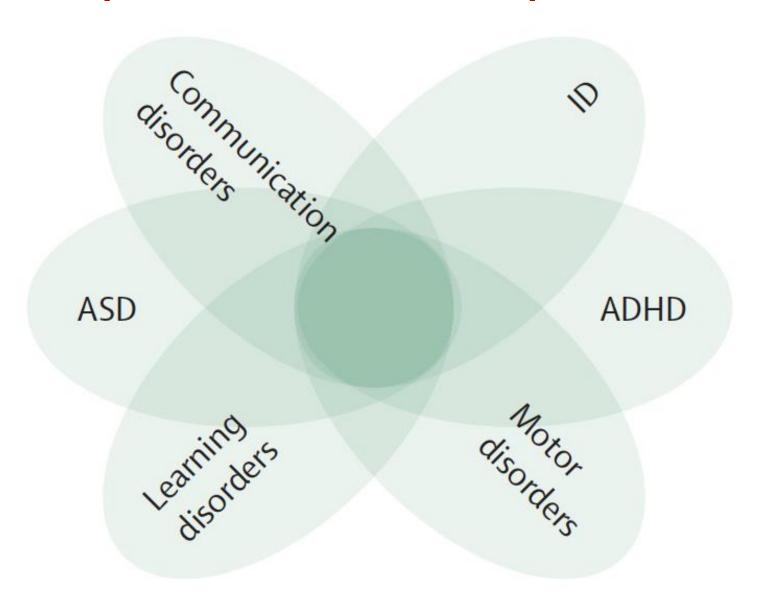


Neurodevelopmental Disorders: concept and empirical models


Jan Buitelaar

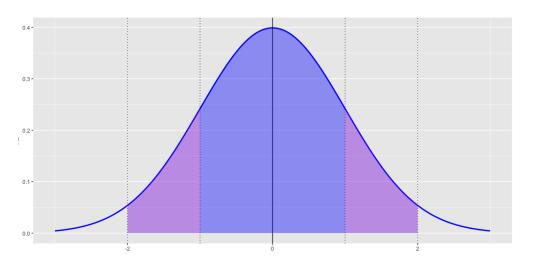
Radboud University Medical Center Donders Institute for Brain, Cognition and Behavior Department of Cognitive Neuroscience, and Karakter Child and Adolescent Psychiatry University Center Nijmegen, The Netherlands Email: Jan.Buitelaar@radboudumc.nl

Science Café, 5 februari 2024 Radboud University Nijmeger

Broader spectrum of neurodevelopmental disorders

Thapar et al. Lancet Psychiatry, 2017 Apr;4(4):339-346

ADHD - Core Symptom Areas

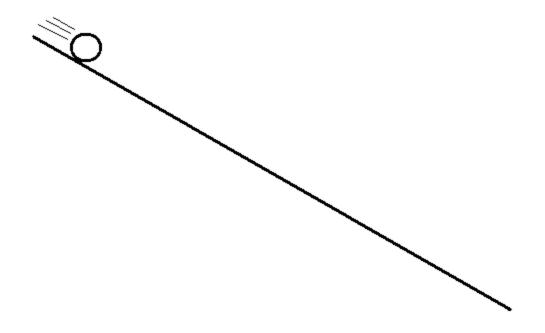

Impulsivity/Hyperactivity

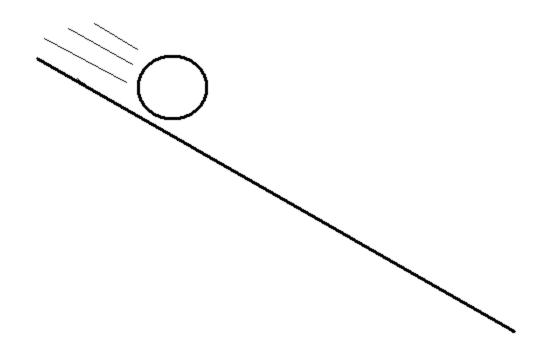
Autism Spectrum Disorder

Social-communication deficits

Fixated interests, repetitive behaviours, and abnormal sensory processing

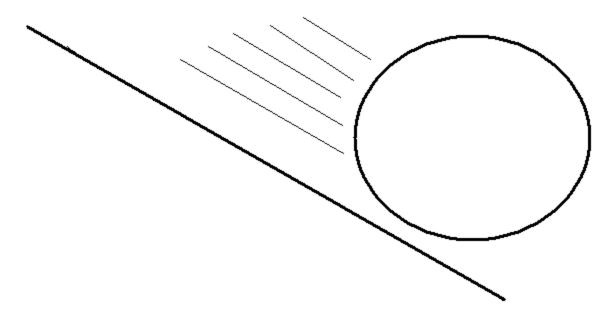
Neurodevelopmental Disorders

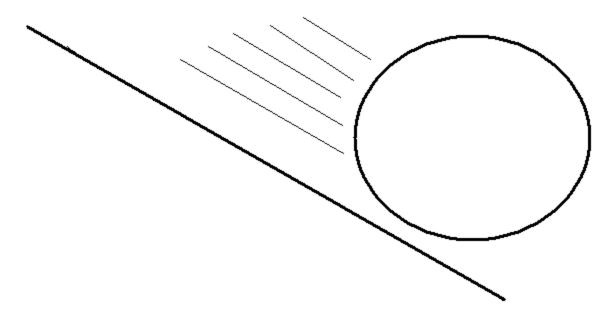

Controls


- Extreme of normal variation
- Quantitative variation
- Neurodiversity
- Dimensional modal
- 4 D's
- Disease,
- Disorder
- Disability
- Difference

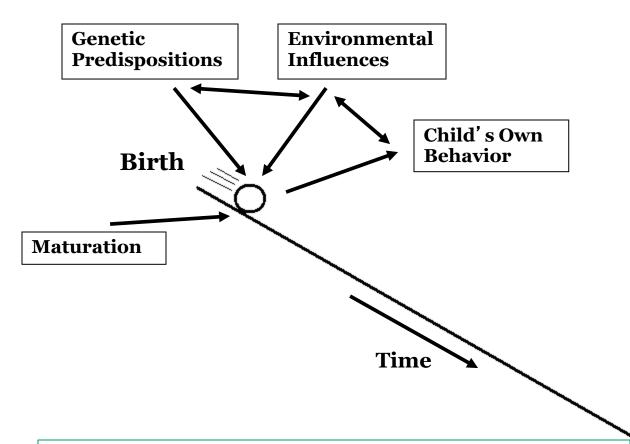

- Disease
- Abnormality
- Qualitative differences
- Psychopathology
- Categories

These neurodevelopmental disorders are thought to result from the disruption of normal brain development and related neurobiological mechanisms during the prenatal and early postnatal period


The developmental "snowball" rolls downhill over time.....

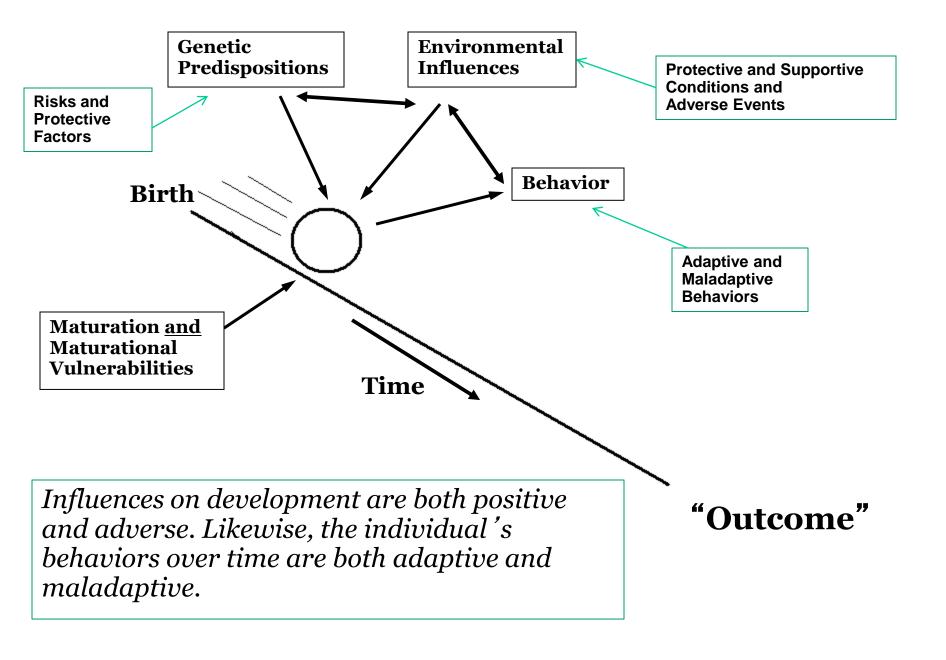


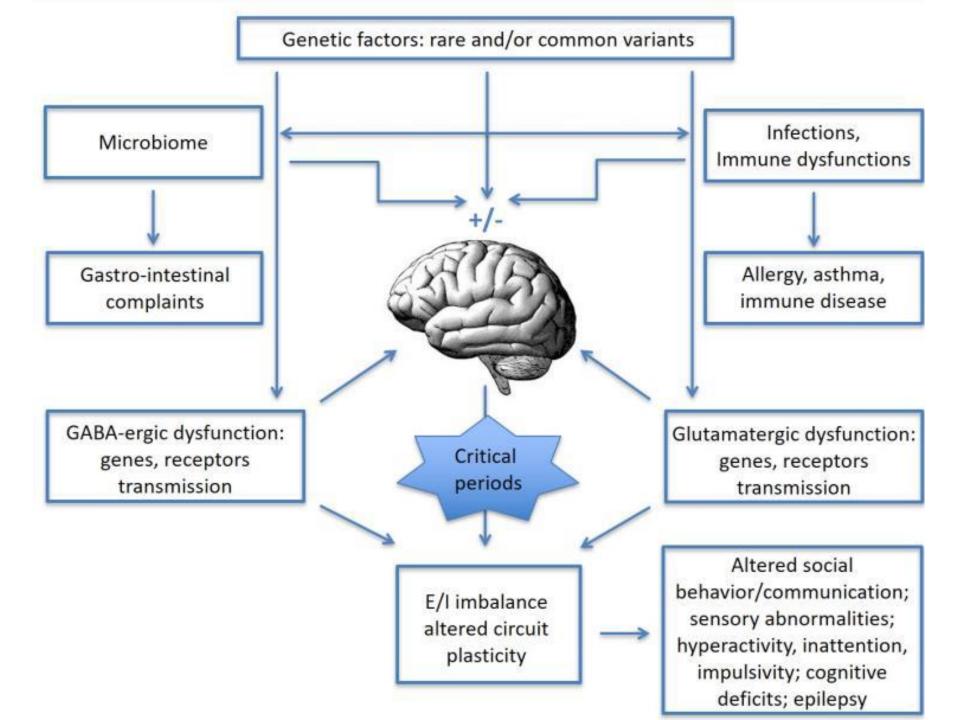
......gathering speed and mass (loadings for psychopathology and atypicality).



"Outcome"?

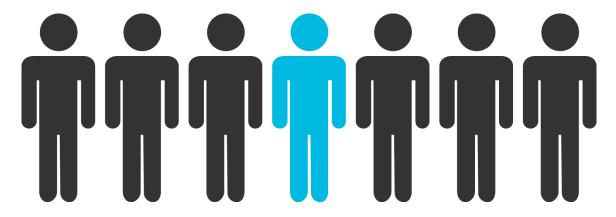
......gathering speed and mass (loadings for psychopathology and atypicality).




"Outcome"?

The developmental pathway of an individual child reflects not only genetic endowment and environmental effects, but also the interactions among these and the child's own activity over time.

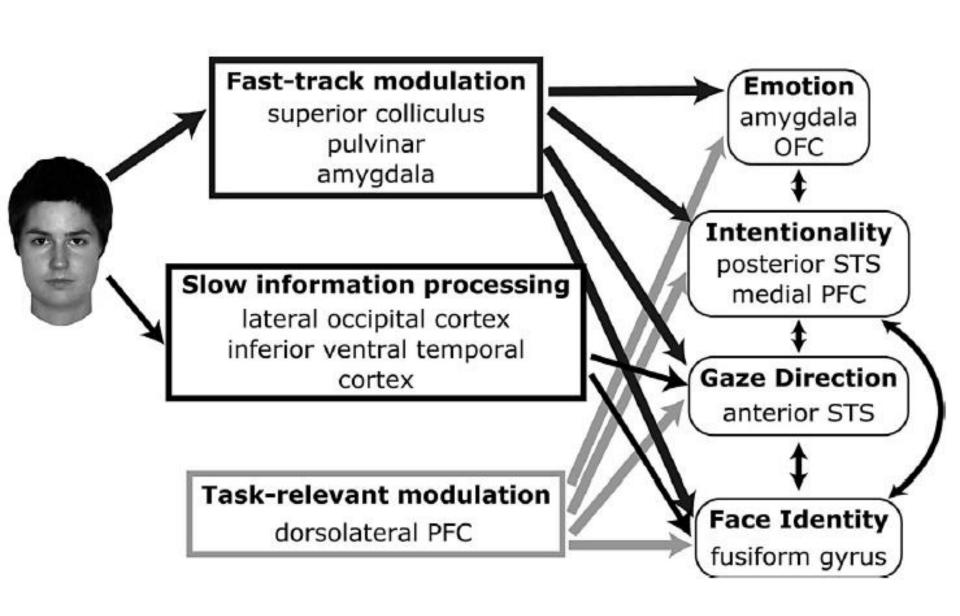
"Outcome"

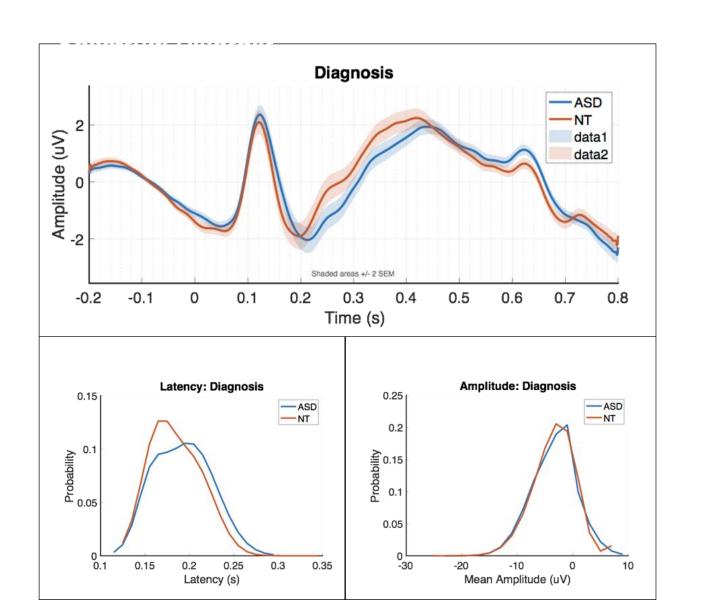


Key words

Stratification / subtyping

Biomarkers

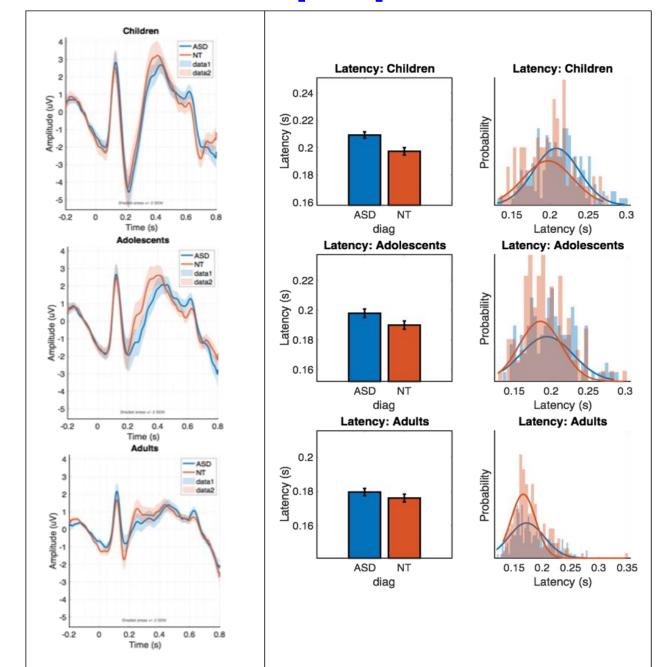

A biomarker is always about predictions that can be made for a particular individual.


Types of biomarkers

Type of biomarker	Purpose	Setting / samples
Diagnostic marker	Predict ADHD classification (DSM-5 / ICD-11)	Clinical and research setting; Decision support tool
Risk marker	Detect ADHD earlier Can be used to stratify early risk groups / paths	High-risk infants, high-risk preschoolers
Prognostic marker	Predict symptom progression / remission Predict psychiatric and somatic comorbidity	From preschool to childhood; from adolescence to adulthood
Predictive marker	Predict treatment response	RCTs and observational clinical settings
Stratification marker	Detect homogeneous subgroups	Preschoolers, children, adolescents, adults

Face processing – face perception

Biomarker proposal to EMA

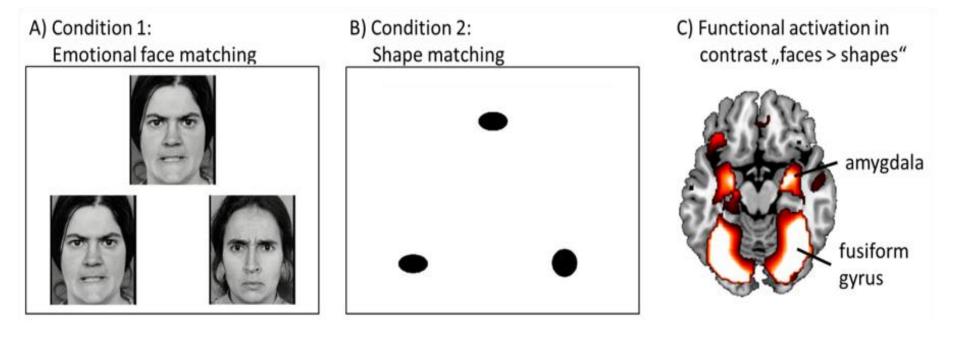

Meta-analysis of N170 latency

Study ID	Subgroup within study	Stimuli	Statistic	s for e	ach stu	dy	Hedg	es's g and 95	% CI	
			Hedges's L	ower U	pper					
			g	limit	limit p-	-Value				
Akechi et al., 2010 (20)	Child	Combined	-0.027	-0.746	0.693	0.942			1	- 1
Apicella et al., 2013 (21)	Child	Combined	0.576	-0.251	1.403	0.172			_	
Batty et al., 2011 (22)	Child	Faces	0.589	-0.123	1.301	0.105		+ =		
Churches et al., 2010, 2012a, 2012b (25,63,64)	Adult	Faces	-0.361	-1.023	0.301	0.286				
Grice et al., 2005 (31)	Child	Faces	0.062	-0.778	0.902	0.885			.	
Gunji et al., 2009 (32)	Child	Combined	0.002	-0.904	0.908	0.996	-		-	.
Hileman et al., 2011 (23)	Child	Combined	2.184	1.477	2.890	0.000		1.475.00.70	⊢	<u> </u>
Khorrami et al., 2013 (53)	Child	Combined	0.416	-0.274	1.105	0.237		-	_	
McPartland et al., 2004 (2)	Adult	Combined	0.885	0.035	1.735	0.041		-	-	
McPartland et al., 2011 (18)	Child	Combined	0.440	-0.146	1.026	0.141		 12	-	
Neuhaus et al., 2016 (33)	Child	Combined	-0.227	-0.722	0.268	0.369		_		
O'Connor et al., 2005 (27)	Adult	Combined	1.405	0.623	2.187	0.000		-		
O'Connor et al., 2005 (27)	Child	Combined	-0.294	-0.995	0.406	0.410	_		1000	
O'Connor et al., 2007 (28)	Adult	Faces	0.847	0.118	1.575	0.023				
Senju et al., 2005 (34)	Child	Combined	-0.135	-0.858	0.587	0.713	-	_=		
Tye et al., 2013; 2014 (65,66)	Child	Combined	-0.023	-0.505	0.459	0.926		-	565	
Webb et al., 2006 (24)	Child	Combined	0.644	0.040	1.247	0.037		_	-	
Wong et al., 2008 (35)	Child	Combined	-0.293	-1.125	0.540	0.491	_	-		
			0.362	0.058	0.667	0.020	- 1	-		- 1
						-3.00	-1.50	0.00	1.50	3.0

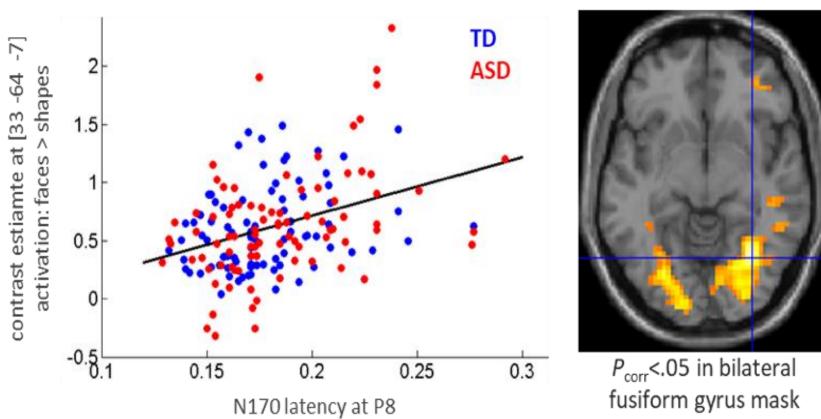
Meta-analysis of N170 amplitude

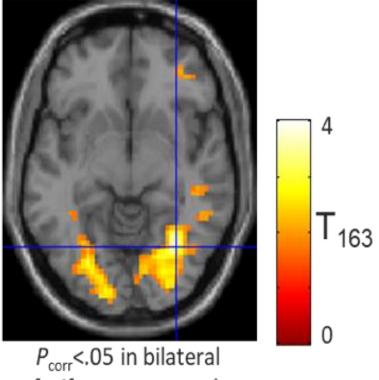
Study ID	Subgroup within study	Stimuli	Statistic	s for e	ach st	udy	Hec	iges's g and 9	5% CI
			Hedges's L	ower l	Jpper				
			g	limit	limit p	o-Value			
Akechi et al., 2010 (20)	Child	Combined	-0.252	-0.974	0.471	0.495	-	-	
Apicella et al., 2013 (21)	Child	Combined	-0.417	-1.236	0.401	0.317	-		
Churches et al., 2010, 2012a; 2012b (25,63,64)	Adult	Faces	0.422	-0.242	1.086	0.213		-	
Cygan et al., 2014 (26)	Adult	Faces	0.880	0.285	1.476	0.004		1 2	_
Grice et al., 2005 (31)	Child	Combined	0.147	-0.694	0.988	0.732			_
Gunji et al., 2009 (32)	Child	Combined	-1.307	-2.334	-0.281	0.013			
Hileman et al., 2011 (23)	Child	Combined	-1.585	-2.223	-0.948	0.000	—■	8	
Khorrami et al., 2013 (53)	Child	Combined	-0.305	-0.991	0.381	0.383	-	_	
McPartland et al., 2004 (2)	Adult	Combined	0.214	-0.596	1.024	0.605			_
McPartland et al., 2011 (18)	Child	Combined	0.198	-0.388	0.779	0.511			_
Neuhaus et al., 2016 (33)	Child	Combined	-0.550	-1.053	-0.048	0.032	-	-	
O'Connor et al., 2005 (27)	Adult	Combined	0.939	0.202	1.676	0.013			-
O'Connor et al., 2005 (27)	Child	Combined	0.034	-0.663	0.730	0.924		-	
O'Connor et al., 2007 (28)	Adult	Faces	-0.085	-0.782	0.611	0.810		_	
Senju et al., 2005 (34)	Child	Combined	-0.335	-1.065	0.395	0.369		_	
Tye et al., 2013; 2014 (65,66)	Child	Combined	0.369	-0.120	0.859	0.139		+=	_
Webb et al., 2006 (24)	Adult	Combined	0.097	-0.492	0.686	0.748		_	8
Webb et al., 2012 (29)	Adult	Combined	0.487	-0.004	0.978	0.052		-	_
			-0.034	-0.328	0.260	0.820		•	
						-3.00	-1.50	0.00	1.

Biomarker proposal to EMA

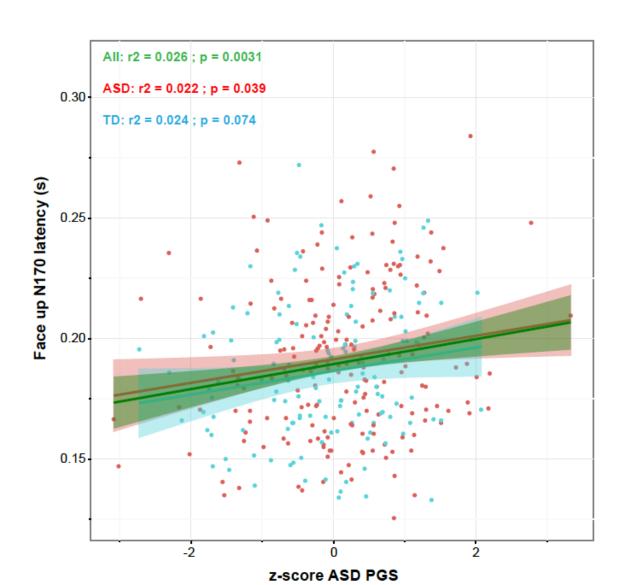


Confounder?


Partial Correlations for Association between N170 latency at P7/P8 to Upright Faces and Associated Symptoms, Controlled for Age

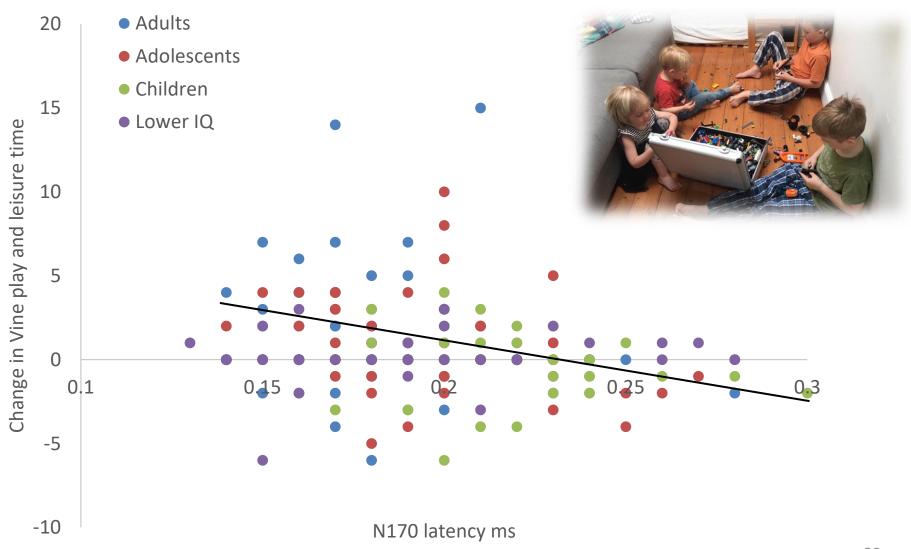

N170 latency P7/P8	ASD group
Verbal IQ	r(239) = -0.049, p = 0.448
Performance IQ	r(240) = -0.096, $p = 0.137$
DAWBA ADHD	r(160) = 0.011, p = 0.888
DAWBA internalising	r(211) = 0.049, p = 0.476
DAWBA externalising	r(211) = 0.045, p = 0.513

Biological plausibility - convergentie



Biological plausibility - convergentie

Biological plausibility - convergentie



N170 and prediction of outcome

Association of the N170 Latency to Upright Faces at P7/P8 at Baseline with the Vineland Socialisation Subscale Scores at Baseline and at a Longitudinal Follow-Up Visit within the ASD Group

Subdomain	Baseline Assessment ^a	Follow-Up Assessment ^b			
	N=213 with EEG and Vineland at baseline	N=145 with baseline EEG +Vineland at follow-up			
Coping	r(208) = 0.010, p = 0.880	r(141) = -0.05, p = 0.538			
Interpersonal Relationships	r(209) =-0.063, p = 0.366	r(137) =0.022, p = 0.796			
Play and Leisure Time	r(209) = 0.014, p = 0.838	r(141) = -0.235, $p = 0.005$ °			

N170 and prediction of outcome

Een nieuwe kijk op ADHD en autisme

Old concept	Modernised concept
Risk factors	Protective and risk factors; resilience
Symptoms	Symptoms plus functioning, wellbeing, QoL
Deficits	Strengths and weaknesses
Behavioural descriptions	Biological, genetic, cognitive and behavioural measures as input for precision medicine
Categoric / binary view	Dimensional view
Service and clinician-based care	Shared decision making, Self-management
Face-2-Face consultations	F-2-F and digital interventions / guidance

